Characterization of VPS34-IN1, a selective inhibitor of Vps34, reveals that the phosphatidylinositol 3-phosphate-binding SGK3 protein kinase is a downstream target of class III phosphoinositide 3-kinase

نویسندگان

  • Ruzica Bago
  • Nazma Malik
  • Michael J. Munson
  • Alan R. Prescott
  • Paul Davies
  • Eeva Sommer
  • Natalia Shpiro
  • Richard Ward
  • Darren Cross
  • Ian G. Ganley
  • Dario R. Alessi
چکیده

The Vps34 (vacuolar protein sorting 34) class III PI3K (phosphoinositide 3-kinase) phosphorylates PtdIns (phosphatidylinositol) at endosomal membranes to generate PtdIns(3)P that regulates membrane trafficking processes via its ability to recruit a subset of proteins possessing PtdIns(3)P-binding PX (phox homology) and FYVE domains. In the present study, we describe a highly selective and potent inhibitor of Vps34, termed VPS34-IN1, that inhibits Vps34 with 25 nM IC50 in vitro, but does not significantly inhibit the activity of 340 protein kinases or 25 lipid kinases tested that include all isoforms of class I as well as class II PI3Ks. Administration of VPS34-IN1 to cells induces a rapid dose-dependent dispersal of a specific PtdIns(3)P-binding probe from endosome membranes, within 1 min, without affecting the ability of class I PI3K to regulate Akt. Moreover, we explored whether SGK3 (serum- and glucocorticoid-regulated kinase-3), the only protein kinase known to interact specifically with PtdIns(3)P via its N-terminal PX domain, might be controlled by Vps34. Mutations disrupting PtdIns(3)P binding ablated SGK3 kinase activity by suppressing phosphorylation of the T-loop [PDK1 (phosphoinositide-dependent kinase 1) site] and hydrophobic motif (mammalian target of rapamycin site) residues. VPS34-IN1 induced a rapid ~50-60% loss of SGK3 phosphorylation within 1 min. VPS34-IN1 did not inhibit activity of the SGK2 isoform that does not possess a PtdIns(3)P-binding PX domain. Furthermore, class I PI3K inhibitors (GDC-0941 and BKM120) that do not inhibit Vps34 suppressed SGK3 activity by ~40%. Combining VPS34-IN1 and GDC-0941 reduced SGK3 activity ~80-90%. These data suggest SGK3 phosphorylation and hence activity is controlled by two pools of PtdIns(3)P. The first is produced through phosphorylation of PtdIns by Vps34 at the endosome. The second is due to the conversion of class I PI3K product, PtdIns(3,4,5)P3 into PtdIns(3)P, via the sequential actions of the PtdIns 5-phosphatases [SHIP1/2 (Src homology 2-domain-containing inositol phosphatase 1/2)] and PtdIns 4-phosphatase [INPP4B (inositol polyphosphate 4-phosphatase type II)]. VPS34-IN1 will be a useful probe to delineate physiological roles of the Vps34. Monitoring SGK3 phosphorylation and activity could be employed as a biomarker of Vps34 activity, in an analogous manner by which Akt is used to probe cellular class I PI3K activity. Combining class I (GDC-0941) and class III (VPS34-IN1) PI3K inhibitors could be used as a strategy to better analyse the roles and regulation of the elusive class II PI3K.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vps34 regulates Rab7 and late endocytic trafficking through recruitment of the GTPase-activating protein Armus.

The class III phosphoinositide 3-kinase (PI3K) Vps34 (also known as PIK3C3 in mammals) produces phosphatidylinositol 3-phosphate [PI(3)P] on both early and late endosome membranes to control membrane dynamics. We used Vps34-deficient cells to delineate whether Vps34 has additional roles in endocytic trafficking. In Vps34-/- mouse embryonic fibroblasts (MEFs), transferrin recycling and EEA1 memb...

متن کامل

Regulation of Mammalian Autophagy by Class II and III PI 3-Kinases through PI3P Synthesis

Synthesis of phosphatidylinositol-3-phosphate (PI3P) by Vps34, a class III phosphatidylinositol 3-kinase (PI3K), is critical for the initial steps of autophagosome (AP) biogenesis. Although Vps34 is the sole source of PI3P in budding yeast, mammalian cells can produce PI3P through alternate pathways, including direct synthesis by the class II PI3Ks; however, the physiological relevance of these...

متن کامل

Regulation of class III (Vps34) PI3Ks.

The class III PI3K (phosphoinositide 3-kinase), Vps34 (vacuolar protein sorting 34), was first identified as a regulator of vacuolar hydrolase sorting in yeast. Unlike other PI3Ks, the Vps34 lipid kinase specifically utilizes phosphatidylinositol as a substrate, producing the single lipid product PtdIns3P. While Vps34 has been studied for some time in the context of endocytosis and vesicular tr...

متن کامل

mTOR activates the VPS34–UVRAG complex to regulate autolysosomal tubulation and cell survival

Lysosomes are essential organelles that function to degrade and recycle unwanted, damaged and toxic biological components. Lysosomes also act as signalling platforms in activating the nutrient-sensing kinase mTOR. mTOR regulates cellular growth, but it also helps to maintain lysosome identity by initiating lysosomal tubulation through a process termed autophagosome-lysosome reformation (ALR). H...

متن کامل

Distinct roles of class I and class III phosphatidylinositol 3-kinases in phagosome formation and maturation

Phagosomes acquire their microbicidal properties by fusion with lysosomes. Products of phosphatidylinositol 3-kinase (PI 3-kinase) are required for phagosome formation, but their role in maturation is unknown. Using chimeric fluorescent proteins encoding tandem FYVE domains, we found that phosphatidylinositol 3-phosphate (PI[3]P) accumulates greatly but transiently on the phagosomal membrane. U...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 463  شماره 

صفحات  -

تاریخ انتشار 2014